A Bayesian Semi-Parametric Model for Random Effects Meta-Analysis
نویسندگان
چکیده
In meta-analysis there is an increasing trend to explicitly acknowledge the presence of study variability through random effects models. That is, one assumes that for each study, there is a study-specific effect and one is observing an estimate of this latent variable. In a random effects model, one assumes that these study-specific effects come from some distribution, and one can estimate the parameters of this distribution, as well as the studyspecific effects themselves. This distribution is most often modelled through a parametric family, usually a family of normal distributions. The advantage of using a normal distribution is that the mean parameter plays an important role, and much of the focus is on determining whether or not this mean is 0. For example, it may be easier to justify funding further studies if it is determined that this mean is not 0. Typically, this normality assumption is made for the sake of convenience, rather than from some theoretical justification, and may not actually hold. We present a Bayesian model in which the distribution of the study-specific effects is modelled through a certain class of nonparametric priors. These priors can be designed to concentrate most of their mass around the family of normal distributions, but still allow for any other distribution. The priors involve a univariate parameter that plays the role of the mean parameter in the normal model, and they give rise to robust inference about this parameter. We present a Markov chain algorithm for estimating the posterior distributions under the model. Finally, we give two illustrations of the use of the model.
منابع مشابه
Semi-parametric Quantile Regression for Analysing Continuous Longitudinal Responses
Recently, quantile regression (QR) models are often applied for longitudinal data analysis. When the distribution of responses seems to be skew and asymmetric due to outliers and heavy-tails, QR models may work suitably. In this paper, a semi-parametric quantile regression model is developed for analysing continuous longitudinal responses. The error term's distribution is assumed to be Asymmetr...
متن کاملFlexible random-effects models using Bayesian semi-parametric models: applications to institutional comparisons.
Random effects models are used in many applications in medical statistics, including meta-analysis, cluster randomized trials and comparisons of health care providers. This paper provides a tutorial on the practical implementation of a flexible random effects model based on methodology developed in Bayesian non-parametrics literature, and implemented in freely available software. The approach i...
متن کاملRandom‐effects meta‐analysis for systematic reviews of phase I clinical trials: Rare events and missing data
Phase I trials aim to establish appropriate clinical and statistical parameters to guide future clinical trials. With individual trials typically underpowered, systematic reviews and meta-analysis are desired to assess the totality of evidence. A high percentage of zero or missing outcomes often complicate such efforts. We use a systematic review of pediatric phase I oncology trials as an examp...
متن کاملLogistic regression analysis with multidimensional random effects: A comparison of three approaches
This paper investigates the performance of three types of random coefficients logistic regression models; that is, models using parametric, semi-parametric, and nonparametric specifications of the distribution of the random effects. Whereas earlier studies focussed on models with a single random effect, here we look at models with multidimensional random effects (intercepts and slopes). Moreove...
متن کاملA Bayesian semi-parametric model for small area estimation
In public health management there is a need to produce subnational estimates of health outcomes. Often, however, funds are not available to collect samples large enough to produce traditional survey sample estimates for each subnational area. Although parametric hierarchical methods have been successfully used to derive estimates from small samples, there is a concern that the geographic divers...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004